toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Alloy Das; Sanket Biswas; Ayan Banerjee; Josep Llados; Umapada Pal; Saumik Bhattacharya edit   pdf
url  openurl
  Title Harnessing the Power of Multi-Lingual Datasets for Pre-training: Towards Enhancing Text Spotting Performance Type Conference Article
  Year 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 718-728  
  Keywords  
  Abstract The adaptation capability to a wide range of domains is crucial for scene text spotting models when deployed to real-world conditions. However, existing state-of-the-art (SOTA) approaches usually incorporate scene text detection and recognition simply by pretraining on natural scene text datasets, which do not directly exploit the intermediate feature representations between multiple domains. Here, we investigate the problem of domain-adaptive scene text spotting, i.e., training a model on multi-domain source data such that it can directly adapt to target domains rather than being specialized for a specific domain or scenario. Further, we investigate a transformer baseline called Swin-TESTR to focus on solving scene-text spotting for both regular and arbitrary-shaped scene text along with an exhaustive evaluation. The results clearly demonstrate the potential of intermediate representations to achieve significant performance on text spotting benchmarks across multiple domains (e.g. language, synth-to-real, and documents). both in terms of accuracy and efficiency.  
  Address Waikoloa; Hawai; USA; January 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG Approved no  
  Call Number Admin @ si @ DBB2024 Serial 3986  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: