|
Ricardo Toledo, S. Sallent, J. Paradell, & Juan J. Villanueva. (1995). CARE: Computer Assisted Radiology Environment. In Pattern Recognition and image analysis: preprints of the VI National Symposium on Pattern Recogniotion & Image Analysis.
|
|
Tao Wu, Kai Wang, Chuanming Tang, & Jianlin Zhang. (2024). Diffusion-based network for unsupervised landmark detection. Knowledge-Based Systems, 292, 111627.
Abstract: Landmark detection is a fundamental task aiming at identifying specific landmarks that serve as representations of distinct object features within an image. However, the present landmark detection algorithms often adopt complex architectures and are trained in a supervised manner using large datasets to achieve satisfactory performance. When faced with limited data, these algorithms tend to experience a notable decline in accuracy. To address these drawbacks, we propose a novel diffusion-based network (DBN) for unsupervised landmark detection, which leverages the generation ability of the diffusion models to detect the landmark locations. In particular, we introduce a dual-branch encoder (DualE) for extracting visual features and predicting landmarks. Additionally, we lighten the decoder structure for faster inference, referred to as LightD. By this means, we avoid relying on extensive data comparison and the necessity of designing complex architectures as in previous methods. Experiments on CelebA, AFLW, 300W and Deepfashion benchmarks have shown that DBN performs state-of-the-art compared to the existing methods. Furthermore, DBN shows robustness even when faced with limited data cases.
|
|
Ayan Banerjee, Sanket Biswas, Josep Llados, & Umapada Pal. (2024). GraphKD: Exploring Knowledge Distillation Towards Document Object Detection with Structured Graph Creation.
Abstract: Object detection in documents is a key step to automate the structural elements identification process in a digital or scanned document through understanding the hierarchical structure and relationships between different elements. Large and complex models, while achieving high accuracy, can be computationally expensive and memory-intensive, making them impractical for deployment on resource constrained devices. Knowledge distillation allows us to create small and more efficient models that retain much of the performance of their larger counterparts. Here we present a graph-based knowledge distillation framework to correctly identify and localize the document objects in a document image. Here, we design a structured graph with nodes containing proposal-level features and edges representing the relationship between the different proposal regions. Also, to reduce text bias an adaptive node sampling strategy is designed to prune the weight distribution and put more weightage on non-text nodes. We encode the complete graph as a knowledge representation and transfer it from the teacher to the student through the proposed distillation loss by effectively capturing both local and global information concurrently. Extensive experimentation on competitive benchmarks demonstrates that the proposed framework outperforms the current state-of-the-art approaches. The code will be available at: this https URL.
|
|
German Barquero, Sergio Escalera, & Cristina Palmero. (2024). Seamless Human Motion Composition with Blended Positional Encodings.
Abstract: Conditional human motion generation is an important topic with many applications in virtual reality, gaming, and robotics. While prior works have focused on generating motion guided by text, music, or scenes, these typically result in isolated motions confined to short durations. Instead, we address the generation of long, continuous sequences guided by a series of varying textual descriptions. In this context, we introduce FlowMDM, the first diffusion-based model that generates seamless Human Motion Compositions (HMC) without any postprocessing or redundant denoising steps. For this, we introduce the Blended Positional Encodings, a technique that leverages both absolute and relative positional encodings in the denoising chain. More specifically, global motion coherence is recovered at the absolute stage, whereas smooth and realistic transitions are built at the relative stage. As a result, we achieve state-of-the-art results in terms of accuracy, realism, and smoothness on the Babel and HumanML3D datasets. FlowMDM excels when trained with only a single description per motion sequence thanks to its Pose-Centric Cross-ATtention, which makes it robust against varying text descriptions at inference time. Finally, to address the limitations of existing HMC metrics, we propose two new metrics: the Peak Jerk and the Area Under the Jerk, to detect abrupt transitions.
|
|
Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Ruben Ballester, et al. (2024). TopoX: A Suite of Python Packages for Machine Learning on Topological Domains.
Abstract: We introduce TopoX, a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains that extend graphs: hypergraphs, simplicial, cellular, path and combinatorial complexes. TopoX consists of three packages: TopoNetX facilitates constructing and computing on these domains, including working with nodes, edges and higher-order cells; TopoEmbedX provides methods to embed topological domains into vector spaces, akin to popular graph-based embedding algorithms such as node2vec; TopoModelx is built on top of PyTorch and offers a comprehensive toolbox of higher-order message passing functions for neural networks on topological domains. The extensively documented and unit-tested source code of TopoX is available under MIT license at this https URL.
|
|
|