toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Albert Rial-Farras; Meysam Madadi; Sergio Escalera edit   pdf
url  doi
openurl 
  Title UV-based reconstruction of 3D garments from a single RGB image Type Conference Article
  Year 2021 Publication 16th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords  
  Abstract Garments are highly detailed and dynamic objects made up of particles that interact with each other and with other objects, making the task of 2D to 3D garment reconstruction extremely challenging. Therefore, having a lightweight 3D representation capable of modelling fine details is of great importance. This work presents a deep learning framework based on Generative Adversarial Networks (GANs) to reconstruct 3D garment models from a single RGB image. It has the peculiarity of using UV maps to represent 3D data, a lightweight representation capable of dealing with high-resolution details and wrinkles. With this model and kind of 3D representation, we achieve state-of-the-art results on the CLOTH3D++ dataset, generating good quality and realistic garment reconstructions regardless of the garment topology and shape, human pose, occlusions and lightning.  
  Address Virtual; December 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FG  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ RME2021 Serial 3639  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: