Publicacions CVC
Home
|
Show All
|
Simple Search
|
Advanced Search
|
Add Record
|
Import
You must login to submit this form!
Login
Quick Search:
Field:
main fields
author
title
publication
keywords
abstract
created_date
call_number
contains:
...
Edit the following record:
Author
...
is Editor
Title
...
Type
Journal Article
Abstract
Book Chapter
Book Whole
Conference Article
Conference Volume
Journal
Magazine Article
Manual
Manuscript
Map
Miscellaneous
Newspaper Article
Patent
Report
Software
Year
...
Publication
...
Abbreviated Journal
...
Volume
...
Issue
...
Pages
...
Keywords
...
Abstract
Image Super Resolution is a potential approach that can improve the image quality of low-resolution optical sensors, leading to improved performance in various industrial applications. It is important to emphasize that most state-of-the-art super resolution algorithms often use a single channel of input data for training and inference. However, this practice ignores the fact that the cost of acquiring high-resolution images in various spectral domains can differ a lot from one another. In this paper, we attempt to exploit complementary information from a low-cost channel (visible image) to increase the image quality of an expensive channel (infrared image). We propose a dual stream Transformer-based super resolution approach that uses the visible image as a guide to super-resolve another spectral band image. To this end, we introduce Transformer in Transformer network for Guidance super resolution, named TnTViT-G, an efficient and effective method that extracts the features of input images via different streams and fuses them together at various stages. In addition, unlike other guidance super resolution approaches, TnTViT-G is not limited to a fixed upsample size and it can generate super-resolved images of any size. Extensive experiments on various datasets show that the proposed model outperforms other state-of-the-art super resolution approaches. TnTViT-G surpasses state-of-the-art methods by up to 0.19∼2.3dB , while it is memory efficient.
Address
...
Corporate Author
...
Thesis
Bachelor's thesis
Master's thesis
Ph.D. thesis
Diploma thesis
Doctoral thesis
Habilitation thesis
Publisher
...
Place of Publication
...
Editor
...
Language
...
Summary Language
...
Original Title
...
Series Editor
...
Series Title
...
Abbreviated Series Title
...
Series Volume
...
Series Issue
...
Edition
...
ISSN
...
ISBN
...
Medium
...
Area
...
Expedition
...
Conference
...
Notes
...
Approved
yes
no
Location
Call Number
...
Serial
Marked
yes
no
Copy
true
fetch
ordered
false
Selected
yes
no
User Keys
...
User Notes
...
User File
...
User Groups
...
Cite Key
...
Related
...
File
URL
...
DOI
...
Online publication. Cite with this text:
...
Location Field:
don't touch
add
remove
my name & email address
Home
SQL Search
|
Library Search
|
Show Record
|
Extract Citations
Help