Publicacions CVC
Home
|
Show All
|
Simple Search
|
Advanced Search
|
Add Record
|
Import
You must login to submit this form!
Login
Quick Search:
Field:
main fields
author
title
publication
keywords
abstract
created_date
call_number
contains:
...
Edit the following record:
Author
...
is Editor
Title
...
Type
Journal Article
Abstract
Book Chapter
Book Whole
Conference Article
Conference Volume
Journal
Magazine Article
Manual
Manuscript
Map
Miscellaneous
Newspaper Article
Patent
Report
Software
Year
...
Publication
...
Abbreviated Journal
...
Volume
...
Issue
...
Pages
...
Keywords
...
Abstract
Human-machine, human-robot interaction, and collaboration appear in diverse fields, from homecare to Cyber-Physical Systems. Technological development is fast, whereas real-time methods for social communication analysis that can measure small changes in sentiment and personality states, including visual, acoustic and language modalities are lagging, particularly when the goal is to build robust, appearance invariant, and fair methods. We study and compare methods capable of fusing modalities while satisfying real-time and invariant appearance conditions. We compare state-of-the-art transformer architectures in sentiment estimation and introduce them in the much less explored field of personality perception. We show that the architectures perform differently on automatic sentiment and personality perception, suggesting that each task may be better captured/modeled by a particular method. Our work calls attention to the attractive properties of the linear versions of the transformer architectures. In particular, we show that the best results are achieved by fusing the different architectures{’} preprocessing methods. However, they pose extreme conditions in computation power and energy consumption for real-time computations for quadratic transformers due to their memory requirements. In turn, linear transformers pave the way for quantifying small changes in sentiment estimation and personality perception for real-time social communications for machines and robots.
Address
...
Corporate Author
...
Thesis
Bachelor's thesis
Master's thesis
Ph.D. thesis
Diploma thesis
Doctoral thesis
Habilitation thesis
Publisher
...
Place of Publication
...
Editor
...
Language
...
Summary Language
...
Original Title
...
Series Editor
...
Series Title
...
Abbreviated Series Title
...
Series Volume
...
Series Issue
...
Edition
...
ISSN
...
ISBN
...
Medium
...
Area
...
Expedition
...
Conference
...
Notes
...
Approved
yes
no
Location
Call Number
...
Serial
Marked
yes
no
Copy
true
fetch
ordered
false
Selected
yes
no
User Keys
...
User Notes
...
User File
...
User Groups
...
Cite Key
...
Related
...
File
URL
...
DOI
...
Online publication. Cite with this text:
...
Location Field:
don't touch
add
remove
my name & email address
Home
SQL Search
|
Library Search
|
Show Record
|
Extract Citations
Help